电脑cpu逻辑电路设计 | 电脑cpu逻辑电路设计原理

电脑cpu逻辑电路设计 | 电脑cpu逻辑电路设计原理

1. 电脑cpu逻辑电路设计原理

1.以CPU为中心的双总线结构

所谓总线实际上是一组并行的导线,导线的数目和计算机字长相同,数据和指令通过总线传送。

2.以存储器为中心的双总线结构

3.单总线结构

主要部件功能:

1.运算

运算器是完成二进制编码的算术或逻辑运算的部件。运算器由累加器(用符号L A 表示)、通用寄存器(用符号L B 表示)和算术逻辑单元(用符号ALU表示)组成,核心是算术逻辑单元。

2.存储器

在计算机中的存储器包括内存储器(又叫主存储器或随机存储器,简称内存或主存)、外存储器、只读存储器和高速缓冲存储器以及寄存器等。随机存储器是按地址存取数据的,若地址总线共有20条(A 0 ~A 19 ),即有20个二进制位,可形成2 20 =1048576个地址(1兆地址)。

3.控制器控制器由三大部件组成,它们是指令部件、时序部件和操作控制部件。

(1)指令部件

指令部件包括程序计数器PC,指令寄存器IR和指令译码器ID。

(2)时序部件

时序部件产生定时节拍,一般由时钟信号源、节拍发生器及微操作电路组成。

4.输出寄存器

输出寄存器用于存放输出结果,以便由它通过必要的接口(输出通道),在输出设备上输出运算结果。

5.输入设备

目前主要通过CRT终端和键盘实现人机对话。磁性设备阅读机、光学阅读机等也可作为输入设备。

2. 电脑cpu逻辑电路设计原理图

CPU本身不能进行逻辑运算,只能参照汇编语言定义输出已有的内容。

举个好懂的例子:传感器感知环境温度为30度,CPU得到信号就去库里查30度对应的内容,查得30大于27,又去查大于27的对应内容,查得启动制冷压缩机,于是CPU输出启动制冷压缩机。其中的30度,大于27度,启动压缩机都是提前定义好的,CPU只是实现了检索。但是给人的感觉就像CPU知冷知热似的。

3. cpu逻辑结构

cpu广义来说是可编程的“逻辑芯片”。

中央处理器(英文CentralProcessingUnit,CPU)是一台计算机的运算核心和控制核心。CPU、内部存储器和输入/输出设备是电子计算机三大核心部件。其功能主要是解释计算机指令以及处理计算机软件中的数据。CPU由运算器、控制器和寄存器及实现它们之间联系的数据、控制及状态的总线构成。差不多所有的CPU的运作原理可分为四个阶段:提取(Fetch)、解码(Decode)、执行(Execute)和写回(Writeback)。 CPU从存储器或高速缓冲存储器中取出指令,放入指令寄存器,并对指令译码,并执行指令。所谓的计算机的可编程性主要是指对CPU的编程。

4. CPU电路设计

您好感谢邀请

现在pc机中使用的cpu芯片属于什么规模集成电路属于超大规模集成电路(Very Large Scale Integration Circuit,VLSI)是一种将大量晶体管组合到单一芯片的集成电路,其集成度大于大规模集成电路。集成的晶体管数在不同的标准中有所不同。从1970年代开始,随着复杂的半导体以及通信技术的发展,集成电路的研究、发展也逐步展开。计算机里的控制核心微处理器就是超大规模集成电路的最典型实例,超大规模集成电路设计(VLSI design),尤其是数字集成电路,通常采用电子设计自动化的方式进行,已经成为计算机工程的重要分支之一。

5. 电脑主板架构电路原理分析

电梯电气原理图是指电梯的电气走向图,包括各类通讯信号,电源。

主板电路图指的是电路板的电气原理图,这类图纸只有厂家或者主板维修人员自己绘制。

电梯从业人员安装维修电梯需要有电梯电气原理图,用不上主板硬件电路图,就像是电脑,我们知道内存插哪里,显卡插哪里,硬盘怎么安装,除了厂家和维修行业,没有谁会去关注板子上的那些电子元器件是干嘛的怎么工作的。只需要了解主板上的各个插件定义,这些内容在电梯电气原理图中都会有标注。

由于现在的楼层都比较高,电梯故障后需要尽快修复投入使用,如果是电梯电路板发生故障,一般已更换为主,维修为辅。

6. cpu电路图工作原理

1 硅提纯

2 切割晶圆

3 影印(Photolithography)

4 蚀刻(Etching)

5 重复、分层

6 封装

7 多次测试

1 硅提纯

在硅提纯的过程中,原材料硅将被熔化,并放进一个巨大的石英熔炉。这时向熔炉里放入一颗晶种,以便硅晶体围着这颗晶种生长,直到形成一个几近完美的单晶硅。以往的硅锭的直径大都是200毫米,而CPU厂商正在增加300毫米晶圆的生产。

2 切割晶圆

硅锭造出来了,并被整型成一个完美的圆柱体,接下来将被切割成片状,称为晶圆。晶圆才被真正用于CPU的制造。所谓的“切割晶圆”也就是用机器从单晶硅棒上切割下一片事先确定规格的硅晶片,并将其划分成多个细小的区域,每个区域都将成为一个CPU的内核(Die)。一般来说,晶圆切得越薄,相同量的硅材料能够制造的CPU成品就越多。

3 影印(Photolithography)

在经过热处理得到的硅氧化物层上面涂敷一种光阻(Photoresist)物质,紫外线通过印制着CPU复杂电路结构图样的模板照射硅基片,被紫外线照射的地方光阻物质溶解。而为了避免让不需要被曝光的区域也受到光的干扰,必须制作遮罩来遮蔽这些区域。这是个相当复杂的过程,每一个遮罩的复杂程度得用10GB数据来描述。

4 蚀刻(Etching)

这是CPU生产过程中重要操作,也是CPU工业中的重头技术。蚀刻技术把对光的应用推向了极限。蚀刻使用的是波长很短的紫外光并配合很大的镜头。短波长的光将透过这些石英遮罩的孔照在光敏抗蚀膜上,使之曝光。接下来停止光照并移除遮罩,使用特定的化学溶液清洗掉被曝光的光敏抗蚀膜,以及在下面紧贴着抗蚀膜的一层硅。然后,曝光的硅将被原子轰击,使得暴露的硅基片局部掺杂,从而改变这些区域的导电状态,以制造出N井或P井,结合上面制造的基片,CPU的门电路就完成了。

5 重复、分层

为加工新的一层电路,再次生长硅氧化物,然后沉积一层多晶硅,涂敷光阻物质,重复影印、蚀刻过程,得到含多晶硅和硅氧化物的沟槽结构。重复多遍,形成一个3D的结构,这才是最终的CPU的核心。每几层中间都要填上金属作为导体,以保持各层电路的连通。层数决定于设计时CPU的布局,以及通过的电流大小。一个完整的CPU内核包含大约20层.

6 封装

经过上一步操作的CPU是一块块晶圆,它还不能直接被用户使用,必须将它封入一个陶瓷的或塑料的封壳中,这样它就可以很容易地装在一块电路板上了。封装结构各有不同,但越高级的CPU封装也越复杂,新的封装往往能带来芯片电气性能和稳定性的提升,并能间接地为主频的提升提供坚实可靠的基础。

7 多次测试

测试是一个CPU制造的重要环节,也是一块CPU出厂前必要的考验。这一步将测试晶圆的电气性能,以检查是否出了什么差错,以及这些差错出现在哪个步骤(如果可能的话)。接下来,晶圆上的每个CPU核心都将被分开测试。

每块CPU将被进行完全测试,以检验其全部功能。某些CPU能够在较高的频率运行,所以被标上了较高的频率;而有些CPU因为种种原因运行频率较低,所以被标上了较低的频率。最后,个别CPU可能存在某些功能上的缺陷,如果问题出在缓存上,制造商仍然可以屏蔽掉它的部分缓存,这意味着这块CPU依然能够出售,只是它可能是Celeron等低端产品。

当CPU被放进包装盒之前,一般还要进行最后一次测试,以确保之前的工作准确无误。根据前面确定的最高运行频率和缓存的不同,它们被放进不同的包装,销往世界各地。

7. 处理器电路工作原理

cpu由运算器,控制器和储存器控制。

1、运算器

计算机运行时,运算器的操作和操作种类由控制器决定。运算器处理的数据来自存储器,处理后的结果数据通常送回存储器,或暂时寄存在运算器中。与ControlUnit共同组成了CPU的核心部分。

2、控制器

控制器是指按照预定顺序改变主电路或控制电路的接线和 改变电路中电阻值来控制电动机的启动、调速、制动与反向的主令装置。控制器由程序状态寄存器PSR,系统状态寄存器SSR, 程序计数器PC,指令均存器等组成,其作为“决策机构”,主要任务就是发布命令,发挥着整个计算机系统操作的协调与指挥作用。 控制的分类主要包括两种,分别为组合逻辑控制器、微程序控制器,两个部分都有各自的优点与不足。其中组合逻辑控制器结构相对较复杂,但优点是速度较快;微程序控制器设计的结构简单,但在修改一条机器指令功能中,需对微程序的全部重编。

3、存储器

存储器是用来存储程序和各种数据信息的记忆部件。存储器可分为主存储器(简称主存或内存)和辅助存储器(简称辅存或外存)两大类。和CPU直接交换信息的是主存。

内存储器在程序执行期间被计算机频繁地使用,并且在一个指令周期期间是可以直接访问的。

免责声明:本网信息来自于互联网,目的在于传递更多信息,并不代表本网赞同其观点。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,并请自行核实相关内容。本站不承担此类作品侵权行为的直接责任及连带责任。如若本网有任何内容侵犯您的权益,请及时联系我们,本站将会在24小时内处理完毕。
相关文章
返回顶部